Buckling Analyses of Rectangular Plates Composed of Functionally Graded Materials by the New Version of DQ Method Subjected to Non-Uniform Distributed In-Plane Loading

Authors

  • R Kazemi Mehrabadi Department of Mechanical Engineering, Islamic Azad University, Arak Branch
Abstract:

In this paper, the new version of differential quadrature method (DQM), for calculation of the buckling coefficient of rectangular plates is considered. At first the differential equations governing plates have been calculated. Later based on the new version of differential quadrature method, the existing derivatives in equation are converted to the amounts of function in the grid points inside the region. Having done that, the equation will be converted to an eigen value problem and the buckling coefficient is obtained. Solving this problem requires two kinds of loading: (1) unaxial half-cosine distributed compressive load and (2) uni-axial linearly varied compressive load. Having considered the answering in this case and the analysis of the effect of number of grid points on the solution of the problem, the accuracy of answering is considered, and also the effect of power law index over the buckling coefficient is investigated. Finally, if the case is an isotropic type, the results will be compared with the existing literature.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The new version of Differential Quadrature Buckling Analyses of FGM Rectangular Plates Under Non-Uniform Distributed In-Plane Loading

In this paper the buckling coefficient of FGM rectangular plates calculated by the new version of differential quadrature method (DQM). At the first the governing differential equation for plate has been calculated and then according to the new version of differential quadrature method (DQM) the existence derivatives in equation , convert to the amounts of function in the grid points inside of ...

full text

Buckling Analysis of Simply-supported Functionally Graded Rectangular Plates under Non-uniform In-plane Compressive Loading

In this research, mechanical buckling of rectangular plates of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of a FGM rectangular plate under uniform in-plane compression are derived. For isotropic materials, convergent buckling loads have been presented for non-uniformly compressed rectangular plates based on a rigorous superposition fourier solution f...

full text

BUCKLING ANALYSIS OF FUNCTIONALLY GRADED MINDLIN PLATES SUBJECTED TO LINEARLY VARYING IN-PLANE LOADING USING POWER SERIES METHOD OF FROBENIUS

In this paper, buckling behavior of moderately thick functionally graded rectangular plates resting on elastic foundation subjected to linearly varying in-plane loading is investigated. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. Based on the first-order shear deformation plate theory and the neutral s...

full text

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

Effect of Non-ideal Boundary Conditions on Buckling of Rectangular Functionally Graded Plates

We have solved the governing equations for the buckling of rectangular functionally graded plates which one of its edges has small non-zero deflection and moment. For the case that the material properties obey a power law in the thickness direction, an analytical solution is obtained using the perturbation series. The applied in-plane load is assumed to be perpendicular to the edge which has no...

full text

Free Vibration Analysis of Functionally Graded Materials Non-uniform Beams

In this article, nonuniformity effects on free vibration analysis of functionally graded beams is discussed. variation in material properties is modeled after Powerlaw and exponential models and the non-uniformity is assumed to be exponentially varying in the width along the beams with constant thickness. Analytical solution is achieved for free vibration with simply supported conditions. It is...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 1

pages  58- 72

publication date 2009-04-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023